

School of Education (SEDU) September – December 2020/2021 Bachelor of Arts in Education (BED) MAT 121: Calculus II

Time: 2hr

INSTRUCTIONS:

Answer QUESTION ONE (Compulsory) and any other TWO QUESTIONS SECTION A

QUESTION 1 (30 marks)

Date:

a) Find the Taylor's series generated by $f(x)=x^4+x^2+1$ at x=-2

(5 marks)

- b) Find the Taylor's polynomial of order 0, 1 and 2 generated by the function $f(x) = \sqrt{x}$ at x=4 (5 marks)
- c) Find the value of c that satisfies the equation below given that $f(x)=\sqrt{x-1}$ is continuous on a closed interval [1, 3]. (5 marks)

$$\frac{f(b)-f(a)}{b-a}=f'(c)$$

d) Integrate;

(i)
$$\int x^3 \sin x^4 dx$$
 (3 marks)

(ii)
$$\int x^2 \ln(x+1) dx$$
 (5 marks)

e) Express
$$\frac{6x+7}{(x+2)^2}$$
 as a sum of partial fractions (3 marks)

f) Use the trapezoidal rule with n = 4 to estimate (4 marks)

$$\int_{1}^{2} x^{2} dx$$

SECTION B

QUESTION 2 (15 marks)

- a) If *R* is the regions bounded above by the graph of the function $f(x)=9-\left(\frac{x}{2}\right)^2$ and below by the graph of the function g(x)=6-x, find the area of region *R*. (6 marks)
- b) Find the volume of the solid of revolution generated by rotating the region between the graph of $f(x) = \sqrt{x}$ and the x-axis over the interval [1,4] around the x- axis.
- (5 marks)
- c) Use the Simpson's rule with n = 4 to estimate (4 marks)

$$\int_{0}^{1} 5x^4 dx$$

QUESTION 3 (15 marks)

a) Express $\frac{2x^3 - 4x^2 - x - 3}{x^2 - 2x - 3}$ as a sum of partial fractions, hence determine (6)

marks)

$$\int \frac{2x^3 - 4x^2 - x - 3}{x^2 - 2x - 3} dx$$

b) Integrate; (5 marks)
$$\int e^{3x} \cos 2x dx$$

(4 marks)

c) Evaluate

$$\int_{0}^{1} \frac{dx}{(x+1)(x^{2}+1)}$$

QUESTION 4 (15 marks)

- a) If $z=5x^4+2x^3y^2-3y$ find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ (4 marks)
- b) Given $y = 4\sin 3x \cos 2t$ find; $\frac{\partial y}{\partial x}$ and $\frac{\partial y}{\partial t}$ (5 marks)
- c) Integrate;

(i)
$$\int \frac{1}{x \ln x} dx$$
 (3 marks)

(ii)
$$\int \frac{x}{2+3x^2} dx$$

(3 marks)

QUESTION 5 (15 marks)

a) Evaluate

(i)
$$\int_{0}^{1} 4\sin^{5}t \, dt$$
 (3 marks)
(ii) $\int_{0}^{4} \int_{1}^{2} (3x^{2}-2) \, dx \, dy$ (5 marks)

- b) Determine the general solution of $x \frac{dy}{dx} = 2 4x^3$ (3 marks)
- c) Determine the particular solution of $(y^2-1)\frac{dy}{dx}=3y$ given that y=1 when $x=2\frac{1}{6}$

(4 marks)